Endothelial progenitor cells stimulate cerebrovascular production of prostacyclin by paracrine activation of cyclooxygenase-2.
نویسندگان
چکیده
In the present study we hypothesized that endothelial progenitor cells (EPCs) enhance production of vasoprotective substances in cerebral arteries. Isolated mononuclear cells from rabbit peripheral blood were cultured in endothelial growth medium (EGM-2) for 7 days to yield EPCs. Rabbit basilar arteries were exposed to autologous EPCs ( approximately 5x10(5) cells) in vitro or in vivo. Twenty-four hours after intracisternal delivery of autologous EPCs, basilar arteries were isolated and expression of vasoregulatory proteins, production of prostacyclin (PGI(2)), and cAMP were determined. Arteries transplanted with EPCs demonstrated increased protein expression of cyclooxygenase-2 and PGI(2) in adventitia, media, and endothelium. Furthermore, production of PGI(2) and arterial content of cAMP, second messenger for PGI(2), were significantly augmented after transplantation of EPCs. In contrast, production of thromboxane A(2) was significantly reduced, whereas production of prostaglandin E(2) remained unchanged. The increased production of PGI(2) and arterial content of cAMP were inhibited only by a selective cyclooxygenase-2 inhibitor, NS-398. In vitro or in vivo treatment of basilar artery with conditioned media from EPCs also caused increase in cyclooxygenase-2 and PGI(2) synthase protein expression associated with elevation of cAMP. Our results suggest that in cerebral arteries, paracrine effect of EPCs promotes vasoprotection by increasing PGI(2) production and intracellular concentration of cAMP. This effect appears to be mediated by activation of arachidonic acid metabolism via stimulation of cyclooxygenase-2/PGI(2) synthase pathway.
منابع مشابه
Paracrine Effects of Bone Marrow–Derived Endothelial Progenitor Cells: Cyclooxygenase-2/Prostacyclin Pathway in Pulmonary Arterial Hypertension
BACKGROUND Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH). Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs) have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT)-induced PAH via ...
متن کاملProgestogens stimulate prostacyclin production by human endothelial cells.
BACKGROUND The effects of progestogens on endothelial physiology are poorly studied. Prostacyclin is a potent vasodilator synthesized by two isoforms of cyclooxygenase (COX) in endothelium. We examined the effects of two clinically used progestogens, progesterone and medroxyprogesterone acetate (MPA), on prostacyclin production by cultured human umbilical vein endothelial cells (HUVEC) and the ...
متن کاملChronic Exposure of Human Endothelial Progenitor Cells to Diabetic Condition Abolished the Regulated Kinetics Activity of Exosomes
By virtue of lifestyle change, incidence of type 2 diabetes is increasingly being raised with different up-surging pathologies. This condition found to disqualify endothelial progenitor cells during neo-vascularization. Besides to an aborted differentiation property, malfunctioned paracrine activities exacerbate vascular abnormalities. It is found nano-scaled exosomes play essential roles on re...
متن کاملExtracellular histones disarrange vasoactive mediators release through a COX‐NOS interaction in human endothelial cells
Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and ni...
متن کاملEndothelial progenitor cells: sowing the seeds for vascular repair.
Endothelial dysfunction is a hallmark of cardiovascular and cerebrovascular disease. Restoring the endothelial lining to normal is critical for slowing or reversing the progression of vascular disease. The progression of endothelial regeneration following mechanical disruption and its effect on vascular function has been described in normal porcine coronary arteries in the absence of risk facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 100 9 شماره
صفحات -
تاریخ انتشار 2007